Exact Solutions of Generalized Modified Boussinesq, Kuramoto-Sivashinsky, and Camassa-Holm Equations via Double Reduction Theory
نویسندگان
چکیده
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملexact solutions of the generalized kuramoto-sivashinsky equation
in this paper we obtain exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. the methods used to determine the exact solutions of the underlying equation are the lie group analysis and the simplest equation method. the solutions obtained are then plotted.
متن کاملWell-posedness of modified Camassa–Holm equations
Article history: Received 4 April 2008 Revised 11 January 2009 Available online 28 February 2009
متن کاملExact travelling wave solutions of a generalized Camassa-Holm equation using the integral bifurcation method
In this paper, a generalized Camassa–Holm equation is studied by using the integral bifurcation method. Many travelling waves such as peaked compacton, compacton, peaked solitary wave, solitary wave and kink-like wave are found. In some parameter conditions, exact parametric representations of these travelling waves in explicit form and implicit form are obtained. 2008 Elsevier Inc. All rights ...
متن کاملSingular solutions of a modified two-component Camassa-Holm equation.
The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/902128